Carbon diffusion from methane into walls of carbon nanotube through structurally and compositionally modified iron catalyst.

نویسندگان

  • Michael J Behr
  • K Andre Mkhoyan
  • Eray S Aydil
چکیده

To understand diffusion processes occurring inside Fe catalysts during multiwall carbon nanotube (MWCNT) growth, catalysts were studied using atomic-resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Nanotube walls emanate from structurally modified and chemically complex catalysts that consist of cementite and a 5 nm amorphous FeOx cap separated by a 2-3 nm thick carbon-rich region that also contains Fe and O (a-C:FexOy). Nonuniform distribution of carbon atoms throughout the catalyst base reveals that carbon molecules from the gas phase decompose near the catalyst multisection junction, where the MWCNT walls terminate. Formation of the a-C:FexOy region provides the essential carbon source for MWCNT growth. Two different carbon diffusion mechanisms are responsible for the growth of the inner and outer walls of each MWCNT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth

The structures of carbon nanotubes grown from catalytic nanoparticles via plasma-enhanced chemical vapor deposition in CH4 /H2 mixtures show a strong dependence on the H2-to-CH4 ratio in the feed gas. A suite of characterization techniques, including optical emission, infrared, and Raman spectroscopies combined with convergent-beam and selected-area electron diffraction, and high-resolution sca...

متن کامل

Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system

Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system

Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...

متن کامل

Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiOx adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2011